

Relational Algebra
Relational algebra is a procedural query language. It gives a step by step process

to obtain the result of the query. It uses operators to perform queries.

Types of Relational operation

1. Select Operation:

o The select operation selects tuples that satisfy a given predicate.
o It is denoted by sigma (σ).
1. Notation: σ p(r)

Where:
σ is used for selection prediction r is used for relation p is used as a

propositional logic formula which may use connectors like: AND OR and

NOT. These relational can use as relational operators like =, ≠, ≥, <, >, ≤.

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT
Downtown L-17 1000
Redwood L-23 2000
Perryride L-15 1500
Downtown L-14 1500
Mianus L-13 500
Roundhill L-11 900
Perryride L-16 1300

INPUT:

σ BRANCH_NAME="perryride" (LOAN)

Output:

BRANCH NAME LOAN NO AMOUNT
Perryride L-15 1500
Perryride L-16 1300

2. Project Operation:

This operation shows the list of those attributes that we wish to appear in the
result. Rest of the attributes are eliminated from the table.

It is denoted by Π.

 Notation: Π A1, A2, An (r)
Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME STREET CITY

Jones Main Harrison

Smith North Rye

Hays Main Harrison

Curry North Rye

Johnson Alma Brooklyn

Brooks Senator Brooklyn

Input:

Π NAME, CITY (CUSTOMER)

Output:

NAME CITY

Johns Harrison

Smith Rye

Hays Harrison

Curry Rye

Johnson Brooklyn

Brooks Brooklyn

3. Union Operation:

Suppose there are two tuples R and S. The union operation contains all the
tuples that are either in R or S or both in R & S.

 It eliminates the duplicate tuples. It is denoted by ∪.

Notation: R ∪ S

A union operation must hold the following condition:

R and S must have the attribute of the same number.

Duplicate tuples are eliminated automatically.

Example:
DEPOSITOR RELATION

CUSTOMER NAME ACCOUNT_NO

Johnson A-101
Smith A-121
Mayes A-321
Turner A-176
Johnson A-273
Jones A-472
Lindsay A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Jones L-17
Smith L-23
Hayes L-15
Jackson L-14
Curry L-93
Smith L-11
Williams L-07

Input:

Π CUSTOMER_NAME (BORROW) ∪ Π CUSTOMER_NAME (DEPOSITOR

Output:

CUSTOMER NAME

Johnson

Smith

Hayes
Turner
Jones
Lindsay
Jackson
Curry
Williams
Mayes

4. Set Intersection:

Suppose there are two tuples R and S. The set intersection operation
contains all tuples that are in both R & S.

 It is denoted by intersection ∩.

Notation: R ∩ S

Example: Using the above DEPOSITOR table and BORROW table

INPUT:

Π CUSTOMER_NAME (BORROW) ∩ Π CUSTOMER_NAME (DEPOSITOR)

OUTPUT:

CUSTOMER NAME

Smith
Jones

5. Set Difference:

Suppose there are two tuples R and S. The set intersection operation contains all
tuples that are in R but not in S.

 It is denoted by intersection minus (-).

Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

Input:

Π CUSTOMER_NAME (BORROW) - Π CUSTOMER_NAME (DEPOSITOR)

Output:

CUSTOMER NAME

Jackson
Hayes
Williams
Curry

6. Cartesian Product:

The Cartesian product is used to combine each row in one table with each row in
the other table. It is also known as a cross product.

It is denoted by X.

Notation: E X D

Example:

EMPLOYEE

EMP_ID EMP_NAME EMP_DEPT

1 Smith A
2 Harry C

3 John B

DEPARTMENT

DEPT_NO DEPT_NAME

A Marketing
B Sales
C Legal

Input:

EMPLOYEE X DEPARTMENT

Output:

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME

1 Smith A A Marketing
1 Smith A B Sales
1 Smith A C Legal
2 Harry C A Marketing

7. Rename Operation:
 The rename operation is used to rename the output relation. It is
denoted by rho (ρ).

Example: We can use the rename operator to rename STUDENT relation to
STUDENT1.

ρ(STUDENT1, STUDENT)

Note:Apart from these common operations Relational algebra can be used in Join
operations.

Relational Calculus

Relational calculus is a non-procedural query language. In the non-procedural query
language, the user is concerned with the details of how to obtain the end results.

o The relational calculus tells what to do but never explains how to do.

Types of Relational calculus:

1. Tuple Relational Calculus (TRC)
o The tuple relational calculus is specified to select the tuples in a relation. In TRC,
filtering variable uses the tuples of a relation.

o The result of the relation can have one or more tuples.

Notation:

{T | P (T)} or {T | Condition (T)}

Where

T is the resulting tuples
P(T) is the condition used to fetch T.

For example:

{ T.name | Author(T) AND T.article = 'database' }

OUTPUT: This query selects the tuples from the AUTHOR relation. It returns a tuple
with 'name' from Author who has written an article on 'database'.
TRC (tuple relation calculus) can be quantified. In TRC, we can use Existential (∃)
and Universal Quantifiers (∀).

For example:

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output: This query will yield the same result as the previous one.

2. Domain Relational Calculus (DRC)
o The second form of relation is known as Domain relational calculus. In domain
relational calculus, filtering variable uses the domain of attributes.

o Domain relational calculus uses the same operators as tuple calculus. It uses

logical connectives ∧ (and), ∨ (or) and ┓ (not).

o It uses Existential (∃) and Universal Quantifiers (∀) to bind the variable

Notation:

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

Where
a1, a2 are attributes P stands for formula built by inner attributes

For example:

{< article, page, subject > | ∈ javatpoint ∧ subject = 'database'}

Output: This query will yield the article, page, and subject from the relational
javatpoint, where the subject is a database.

